Свойства стали

Гистерезис вязкости

Известны многочисленные эксперименты, в ходе которых был установлен гистерезис вязкости жидкой стали, заключающийся в несоответствии значений вязкости, полученных в режимах нагрева и охлаждения металла: вязкость расплава в режиме охлаждения после нагрева часто оказывается выше вязкости при первоначальном нагреве.

Гистерезис особенно заметен для легированных сталей. При объяснении этого явления иногда используют термин «гетерогенность строения жидкой стали». При этом подразумевается обычно явление сохранения или создания медленно распадающихся группировок или решеток, отличающихся наличием определенных связей. Состав и размеры этих группировок зависят от состава стали и технологии плавки. Предполагается, что для каждой стали существует определенная критическая температура, при достижении которой формируется квазигомогенное строение расплава, устраняющее гистерезис вязкости.

Между свойствами стали и ее вязкостью в жидком состоянии существует связь. Одновременно с получением квазигомогенного строения жидкости в результате устранения гистерезиса вязкости достигаются максимальные пластичность и ударная вязкость стали в твердом состоянии; прочностные свойства стали при этом понижаются.

Цикл исследований свойств жидкой стали выполнен уральскими учеными П. В. Гельдом, Б. А. Баумом и др. Результаты этих исследований свидетельствуют о том, что для большинства сталей и сплавов характерно различие вязкости и удельного электрического сопротивления при нагреве и охлаждении. Исследователи этого вопроса предполагают, что гистерезис вязкости и электрического сопротивления объясняется изменениями в структуре расплавов.

Наиболее часто встречающиеся (по мнению этих ученых) три формы гистерезиса вязкости приведены на рис 10.2.

Рис. 10.2 Формы гистерезиса вязкости

Случай, когда гистерезис появляется лишь при определенном перегреве над линией ликвидуса (tг-температура начала ветвления политерм или начала гистерезиса), отражен на рис. 10.2, а. При большем перегреве положение политерм не изменяется. По мнению предложивших эту теорию Гельда и Баума, в этом случае, по-видимому, изменения неравновесной структуры и приближение расплава к состоянию равновесия, начиная с некоторой температуры, происходят монотонно и завершаются при tг.
На рис. 10.2, б приведен случай, когда гистерезис наблюдается только при нагреве расплава до температур, превышающих температуру аномального уменьшения свойств tан. При этой температуре происходит скачкообразное изменение структуры расплава, что и вызывает аномальное повышение вязкости и быстрый переход в равновесное состояние.
Наконец, на рис. 10.2, в иллюстрируется случай, когда гистерезис наблюдается только при нагреве до критической температуры tкp, нагрев до которой при последующем охлаждении вызывает ветвление политерм. По мнению Б. А. Баума и Г. В. Тягунова, один из возможных вариантов объяснения такой зависимости состоит в следующем. Расплав имеет не менее двух структурных составляющих, например карбидоподобные комплексы и металлическую матрицу. При нагреве энергия теплового движения частиц возрастает пропорционально абсолютной температуре, устойчивость межатомных связей уменьшается немонотонно. Однако эта немонотонность в ходе нагрева может не проявиться на данном свойстве, если изменения в отдельных структурных составляющих взаимосвязаны и компенсируют одно другое. Они полностью завершаются только вблизи tкр. В ходе обратного понижения температуры исчезнувшая неравновесная структура не восстанавливается, но силы межатомного взаимодействия проявляются по-прежнему немонотонно. Так, в упомянутой модели атомы углерода снова становятся соседями атомов карбидообразующих элементов. Это ухудшает условия их взаимного перемещения и обнаруживается в резком возрастании вязкости при tг.